Spectrum for $Y=0$ brane in planar AdS/CFT

Ryo Suzuki (ITF, Utrecht University)
with Zoltán Bajnok (Hungarian Academy of Science)
Raphael Nepomechie (Univ. Miami)
and László Palla (Roland Eötvös Univ.)

Based on JHEP 1208 (2012) 149
October 2012
Spectrum for \(Y=0 \) brane in planar AdS/CFT

Ryo Suzuki (ITF, Utrecht University)

with Zoltán Bajnok (Hungarian Academy of Science)

Raphael Nepomechie (Univ. Miami)

and László Palla (Roland Eötvös Univ.)

Based on JHEP 1208 (2012) 149

October 2012
AdS/CFT for open and closed strings
AdS/CFT Correspondence

IIB string on $\text{AdS}_5 \times S^5$ and $\mathcal{N} = 4$ $SU(N)$ super Yang-Mills should make the same prediction in the large N limit

with the identification

$$\frac{\sqrt{\lambda}}{2\pi} = \frac{R^2}{2\pi \alpha'} \sim \sqrt{N} g_{\text{str}} \iff \lambda = Ng_{\text{YM}}^2$$
AdS/CFT Correspondence

IIB string on $\text{AdS}_5 \times S^5$ and $\mathcal{N} = 4$ $SU(N)$ super Yang-Mills should make the same prediction in the large N limit

with the identification

$$\frac{\sqrt{\lambda}}{2\pi} = \frac{R^2}{2\pi \alpha'} \sim \sqrt{N g_{\text{str}}} \leftrightarrow \lambda = Ng_{\text{YM}}^2$$

Strong Weak Duality

Semiclassical string $\lambda \gg 1$ SYM perturbation $\lambda \ll 1$

- Difficulty if we want to study AdS/CFT
- Advantage if we want to apply AdS/CFT
AdS/CFT Correspondence

IIB string on $\text{AdS}_5 \times S^5$ and $\mathcal{N} = 4 \ SU(N)$ super Yang-Mills should make the same prediction in the large N limit

with the identification $\frac{\sqrt{\lambda}}{2\pi} = \frac{R^2}{2\pi \alpha'} \sim \sqrt{Ng_{\text{str}}} \leftrightarrow \lambda = Ng_{\text{YM}}^2$

Strong Weak Duality

Semiclassical string $\lambda \gg 1$ SYM perturbation $\lambda \ll 1$

Integrability + superconformal symmetry

• Possible to test AdS/CFT by the exact computation

Tuesday, November 13, 2012
Most studied physical observables in AdS/CFT are

Closed string states ↔ **Single-trace operators**

Energy of a short spinning string

$\mathcal{E}(\lambda)$

Dimension of Konishi multiplet

\[
\text{tr}(\Phi^I \Phi^I) \\
\text{tr}(Z^2 W^2 - (ZW)^2) \\
\text{tr}\left(D_+ Z^2 - (D_+ Z)^2\right)
\]

$\Delta(\lambda)$

$W \equiv \Phi^1 + i\Phi^2, \quad Y \equiv \Phi^3 + i\Phi^4, \quad Z \equiv \Phi^5 + i\Phi^6$
Most studied physical observables in AdS/CFT are:

Closed string states ↔ **Single-trace operators**

- Energy of a short spinning string
- Dimension of Konishi multiplet
 \[\text{tr} \left(\Phi^I \Phi^I \right) \]
 \[\text{tr} \left(Z^2 W^2 - (ZW)^2 \right) \]
 \[\text{tr} \left(D_+ Z^2 - (D_+ Z)^2 \right) \]

Energy of a periodic spin chain state

\[E(\lambda) \]

\[\Delta(\lambda) \]

Exact spectrum via TBA

Tuesday, November 13, 2012
The exact Konishi dimension

- **SYM results up to 5-loop**
 [Fiamberti, Santambrogio, Sieg, Zanon (2007)] [Velizhanin (2008)]
 [Eden, Heslop, Korchemsky, Smirnov, Sokatchev (2012)]

- **String results up to 1-loop**

- **Numerical results up to \(l \approx 2000 \)**
 [Gromov, Kazakov, Vleira (2009)] [Frolov (2010)] and others

- **Analytic results up to 7-loop at weak coupling**
Open string sector in AdS/CFT are less studied

- Minimal surface vs. Wilson loop vev
 An open string (or disk worldsheet) ending on a stack of N D3 branes

- Spectrum of open string state vs. Determinant-like operators
 An open string ending on another rotating single D(3)-brane
Open string sector in AdS/CFT are less studied

- Minimal surface vs. Wilson loop vev

An open string (or disk worldsheet) ending on a stack of N D3 branes

This Talk

- Spectrum of open string state vs. Determinant-like operators

An open string ending on another rotating single D(3)-brane

$= \text{(Spherical) Giant gravitons}$
• **Determinant operators correspond to D-branes (without open string)**

\[
\det Z \equiv \varepsilon_{i_1 \ldots i_N} \varepsilon^{j_1 \ldots j_N} Z_{j_1}^{i_1} \ldots Z_{j_N}^{i_N}
\]

\[
\text{Half BPS} \quad \Rightarrow \quad \Delta_{\text{det}} = N
\]

• **Determinant-like operators correspond to D-branes with open string excitations**

\[
\mathcal{O}_1 \equiv \varepsilon_{i_1 \ldots i_N} \varepsilon^{j_1 \ldots j_N} Z_{j_1}^{i_1} \ldots Z_{j_{N-1}}^{i_{N-1}} \chi_{j_N}^{i_N}
\]

\[
\mathcal{O}_2 \equiv \varepsilon_{i_1 \ldots i_N} \varepsilon^{j_1 \ldots j_N} Y_{j_1}^{i_1} \ldots Y_{j_{N-1}}^{i_{N-1}} \chi_{j_N}^{i_N}
\]

\[
\text{Non-BPS} \quad \Rightarrow \quad \Delta[\mathcal{O}_{1,2}] - N \text{ is nontrivial}
\]
Giant graviton is determinant

- Matching of the residual symmetry
 \[
 \text{det } Z \leftrightarrow S^3 \subset S^5 : SO(6) \to SO(4) \times SO(2)
 \]

- However, multi-traces may also be good because
 ✓ For large operators, multi-traces can mix at large \(N\)
 ✓ Determinant is a linear combination of multi-traces
 \[
 \text{det } Z = c[1^N](\text{tr } Z)^N + \cdots + c[N]\text{tr } Z^N, \quad c[x] = \text{constant}
 \]

- Determinant and sub-determinant do not correlate, nor do maximal and non-maximal giant gravitons

[Witten (1998)] [Balasubramanian, Berkooz, Naqvi, Strassler (2001)] [Corley, Jevicki, Ramgoolam (2001)]
Open string in AdS/CFT from integrability

Energy of open string ending on the D3-brane

\[E(\lambda) \]

(Subtracted) dimension of determinant-like operator

\[\Delta(\lambda) \]

One-loop Hamiltonian is integrable
Open string in AdS/CFT from integrability

Energy of open string ending on the D3–brane $E(\lambda)$

(Subtracted) dimension of determinant–like operator $\Delta(\lambda)$

Integrability Method

Energy of an open spin chain state with integrable boundary conditions

Exact spectrum via boundary TBA?
Why boundary?

- New examples of AdS/CFT dictionary by applying integrability methods (TBA/Y-system ...)
- Challenge to study more general integrable models (periodic → twist → deformation → boundary ...)
- Boundary models are intrinsically finite-size (c.f. Casimir effects between parallel plates)
Our goal and strategy

Want to compute the spectrum of an open string ending on the “Y=0” brane

- Boundary Bethe-Yang equations
 (Asymptotic Bethe Ansatz equations)

- Finite-size corrections (Lüscher formula)

- Conjecture the exact method (TBA/Y-system)

[Correa, Young (2009)] [Bajnok, Palla (2010)]

[Hofman, Maldacena (2007)]

[Galleas (2009)]

[Bajnok, Nepomechie, Palla, RS (2012)]
Our goal **and strategy**

Want to compute the spectrum of an open string ending on the “$Y=0$” brane

- **Boundary Bethe-Yang equations**
 - *(Asymptotic Bethe Ansatz equations)*

- **Finite-size corrections** *(Lüsher formula)*

- Conjecture the **exact** method *(TBA/Y-system)*

By conjecturing how to include integrable boundaries from the lessons in periodic (closed string) cases

[Correa, Young (2009)] [Bajnok, Palla (2010)]

[Hofman, Maldacena (2007)]

[Correa, Young (2009)] [Bajnok, Palla (2010)]

[Galleas (2009)]

[Bajnok, Nepomechie, Palla, RS (2012)]
Plan of Talk

• AdS/CFT for open and closed strings
• Double-row transfer matrix
• The Y=0 brane
• Finite-size corrections from Lüscher formula
• Boundary Y-system and boundary TBA
• Conclusion
Integrable models with boundary:
double-row transfer matrix
Integrability in the σ-model on AdS$_5 \times S^5$

- This model is **classically integrable** because the target space is a supercoset.
- We break conformal symmetry by a gauge choice.
- By taking the **large-radius limit**, we can define asymptotic states and their S-matrix.
- This worldsheet S-matrix is (hopefully) **integrable**.
What is integrability?

Integrable S-matrices satisfy the Yang-Baxter relation

\[S_{123} = S_{12} S_{13} S_{23} = S_{23} S_{13} S_{12} \]

\[S_{ij} : V_i \otimes V_j \rightarrow V_j \otimes V_i , \quad \text{act trivially on } V_k \ (k \neq i, j) \]
Integrable S-matrices satisfy the Yang-Baxter relation

What is integrability?

Integrable S-matrices factorize into the product of two-body S-matrices with any ordering of the product.

\[S_{123} = S_{12} S_{13} S_{23} = S_{23} S_{13} S_{12} \]

Many-body S-matrix factorizes into the product of two-body S-matrices with any ordering of the product.
Integrability and Yang–Baxter relation

Yang–Baxter tells that transfer matrices commute

\[T_a(q) = (s) \text{tr}_{V_a} \left[S_{a1}(q, p_1) \cdots S_{aN}(q, p_N) \right] \]

\[T_a = S_{a1} \cdots S_{aN} : V_a \otimes V^\otimes N \rightarrow V^\otimes N \otimes V_a \]

\[T_a : V^\otimes N \rightarrow V^\otimes N, \text{ matrix of dim } V^N \]
Integrability and Yang–Baxter relation

Yang–Baxter tells that transfer matrices commute

Yang-Baxter algebra: $S_{ab} T_a T_b = T_b T_a S_{ab}$

Take trace in $V_a \otimes V_b \Rightarrow [T(q_a), T(q_b)] = 0$

$T_a(q) = \sum_n Q_n q^n$ generates conserved charges $\{Q_n\}$
Summary of integrability

- Yang-Baxter relation (or algebra)
- Factorized S-matrix
- Transfer matrix generates infinite charges

Transfer matrix is an important quantity in (periodic) integrable models
Summary of boundary integrability

- **Boundary** Yang-Baxter relation (or algebra)
- **Integrable** reflection amplitude
- **Double-row** transfer matrix generates infinite charges

Double-row transfer matrix is important in boundary integrable models
Boundary Yang–Baxter relation

To maintain the integrability at boundary, boundary reflection and bulk scattering must commute [Sklyanin (1988)]

\[
S(-p_2, -p_1) \mathcal{R}(p_1) S(p_1, -p_2) \mathcal{R}(p_2) = \mathcal{R}(p_2) S(p_2, -p_1) \mathcal{R}(p_1) S(p_1, p_2)
\]

By using \(S(a, b) = S(-b, -a) \) this becomes

\[
S(p_1, p_2) \mathcal{R}(p_1) S(p_1, -p_2) \mathcal{R}(p_2) = \mathcal{R}(p_2) S(p_1, -p_2) \mathcal{R}(p_1) S(p_1, p_2)
\]
Boundary Yang–Baxter relation leads to

Boundary Yang–Baxter algebra

\[S(p_1, p_2) T(p_1) S(p_1, -p_2) T(p_2) = T(p_2) S(p_1, -p_2) T(p_1) S(p_1, p_2) \]

However, we cannot just take the trace!

\[T(p_1) T(p_2) \neq T(p_2) T(p_1) \]
Sklyanin combined the right- and left-reflections

\[S_{12} T_1^- \tilde{S}_{12} T_2^- = T_2^- \tilde{S}_{12} T_1^+ S_{12} \]

\[S_{12}^{-1} T_1^{+t_1} \tilde{S}_{12}^{-1} T_2^{+t_2} = T_2^{+t_2} \tilde{S}_{12}^{-1} T_1^{+t_1} S_{12}^{-1} \]

If the S-matrix is transpose invariant \(S_{12}^{t_1} = S_{12}^{t_2} \)

\[D(q) \equiv \text{tr} \left[T_-(q) T_+(q) \right] \quad \text{with different } q \text{ commute!} \]

Thus D generates infinite conserved charges
Double-row transfer matrix

\[D_a = \text{tr}_a \left[T_- T_+ \right] = \text{tr}_a \left[S_{aN} \cdots S_{a1} R^- S_{1a} \cdots S_{Ny} R^+ \right] \]

- \(D_a \) is not the “square” of transfer matrix

\[S_{aj} : V_a \otimes V_j \to V_j \otimes V_a, \quad S_{ja} : V_j \otimes V_a \to V_a \otimes V_j \]

\(S_{aj} S_{ja} \) is a matrix product
Double-row transfer matrix

\[D_a = \text{tr}_a \left[T_- T_+ \right] = \text{tr}_a \left[S_{aN} \cdots S_{a1} R^{-} S_{1a} \cdots S_{Na} R^{+} \right] \]

- \(D_a \) is not the “square” of transfer matrix

\[S_{aj} : V_a \otimes V_j \rightarrow V_j \otimes V_a, \quad S_{ja} : V_j \otimes V_a \rightarrow V_a \otimes V_j \]

\(S_{aj} S_{ja} \) is a matrix product
Summary of boundary integrability

- Boundary Yang-Baxter relation (or algebra)
- Integrable reflection amplitude
- Double-row transfer matrix generates infinite charges

Double-row transfer matrix is important in boundary integrable models
The Y=0 brane
Spherical maximal giant gravitons (SMGG)

D3-brane in $\text{AdS}_5 \times S^5$
with a large angular momentum $J = \mathcal{O}(N)$

Spherical \Leftrightarrow “wrap” on $S^3 \subset S^5$
with the angular momentum bound $J \leq N$

Maximal \Leftrightarrow $J = N$ \Leftrightarrow half-BPS state

Spherical maximal giant gravitons are dual to determinants

$\det \Phi \sim \epsilon^{i_1 \ldots i_N} \epsilon_{j_1 \ldots j_N} \Phi^{j_1}_{i_1} \ldots \Phi^{j_N}_{i_N}$

Open strings on SMGG are dual to determinant-like operators

$\mathcal{O}_\Phi (\chi) \sim \epsilon^{i_1 \ldots i_N} \epsilon_{j_1 \ldots j_N} \Phi^{j_1}_{i_1} \ldots \chi^{j_m}_{i_m} \ldots \Phi^{j_N}_{i_N}$
Spherical maximal giant gravitons (SMGG)

[McGreevy, Susskind, Toumbas (2000)]

D3-brane in $\text{AdS}_5 \times S^5$

with a large angular momentum $J = \mathcal{O}(N)$

Spherical \Leftrightarrow “wrap” on $S^3 \subset S^5$

with the angular momentum bound $J \leq N$

Maximal $\Leftrightarrow J = N \Leftrightarrow$ half-BPS state

Spherical maximal giant gravitons are dual to determinants

[Balasubramanian, Berkooz, Naqvi, Strassler (2001)]

$$\det \Phi \sim \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \Phi_{i_1}^{j_1} \cdots \Phi_{i_N}^{j_N}$$

Open strings on SMGG are dual to determinant-like operators

[Balasubramanian, Huang, Levi, Naqvi (2002)]

$$\mathcal{O}_\Phi (\chi) \sim \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \Phi_{i_1}^{j_1} \cdots \chi_{i_m}^{j_m} \cdots \Phi_{i_N}^{j_N}$$

Tuesday, November 13, 2012
Classification of giant graviton branes

SMGG are classified according to the choice:

\[S^3 \subset S^5 = \{ |X|^2 + |Y|^2 + |Z|^2 = R^2 \} \]

\[X = 0 \text{ or } Y = 0 \text{ or } Z = 0 \ldots \]

SMGG as a boundary condition for a spin chain

\[
\begin{align*}
\text{tr} \ (ZZ \cdots ZZ) & \quad \text{Periodic} \\
\epsilon_{i_1 \cdots i_N} \epsilon^{j_1 \cdots j_N} Y^{N-1} (ZZ \cdots ZZ)_{j_N}^{i_N} & \quad Y = 0 \\
\epsilon_{i_1 \cdots i_N} \epsilon^{j_1 \cdots j_N} Z^{N-1} (ZZ \cdots ZZ)_{j_N}^{i_N} & \quad Z = 0
\end{align*}
\]

Insert \(Z^J \) to det \(\Phi \). The choice \(Z^J \) breaks the global symmetry

\[\text{psu}(2,2|4) \rightarrow \text{psu}(2|2)^2 \times u(1) \]

which may be broken further by boundary conditions.
Classification of giant graviton branes

SMGG are classified according to the choice:

$$S^3 \subset S^5 = \{ |X|^2 + |Y|^2 + |Z|^2 = R^2 \}$$

$$X = 0 \text{ or } Y = 0 \text{ or } Z = 0 \ldots$$

SMGG as a boundary condition for a spin chain

$$\text{tr} \ (ZZ \cdots ZZ)$$

$$\epsilon_{i_1 \cdots i_N} \epsilon^{j_1 \cdots j_N} Y^{N-1} (ZZ \cdots ZZ)^i_{j_N}$$

$$\epsilon_{i_1 \cdots i_N} \epsilon^{j_1 \cdots j_N} Z^{N-1} (ZZ \cdots ZZ)^i_{j_N}$$

Periodic

$$Y = 0$$

$$Z = 0$$

Insert Z^J to det Φ. The choice Z^J breaks the global symmetry $\text{psu}(2, 2|4) \rightarrow \text{psu}(2|2)^2 \times u(1)$

which may be broken further by boundary conditions

Tuesday, November 13, 2012
Classification of giant graviton branes

SMGG are classified according to the choice:

\[S^3 \subset S^5 = \{ |X|^2 + |Y|^2 + |Z|^2 = R^2 \} \]
\[X = 0 \text{ or } Y = 0 \text{ or } Z = 0 \ldots \]

SMGG as a boundary condition for a spin chain

\[\text{tr} (ZZ \cdots ZZ) \]
\[\epsilon_{i_1 \ldots i_N} \epsilon^{j_1 \ldots j_N} Y^{N-1} (ZZ \cdots ZZ)^{i_N}_{j_N} \quad \text{Periodic} \]
\[\epsilon_{i_1 \ldots i_N} \epsilon^{j_1 \ldots j_N} Z^{N-1} (ZZ \cdots ZZ)^{i_N}_{j_N} \quad Y = 0 \]
\[\epsilon_{i_1 \ldots i_N} \epsilon^{j_1 \ldots j_N} \quad Z = 0 \]

Insert \(Z^J \) to \(\det \Phi \). The choice \(Z^J \) breaks the global symmetry

\[\text{psu}(2,2|4) \rightarrow \text{psu}(2|2)^2 \times u(1) \]

which may be broken further by boundary conditions
The $Y=0$ and $Z=0$ branes

Open string state on the $Y=0$ brane should correspond to

$$\mathcal{O}_Y(\chi) \sim \sum_k \epsilon_{i_1 \ldots i_N} \epsilon^{j_1 \ldots j_N} Y^i_{j_1} \ldots Y^i_{j_{N-1}} (Z^k \chi Z^{j-k})^i_{j_N}$$

Open string state on the $Z=0$ brane should correspond to

$$\mathcal{O}_Z(\chi, \chi', \chi'') \sim \sum_k \epsilon_{i_1 \ldots i_N} \epsilon^{j_1 \ldots j_N} Z^i_{j_1} \ldots Z^i_{j_{N-1}} (\chi Z^k \chi' Z^{j-k} \chi'')^i_{j_N}$$

Unlike spinning strings, giant gravitons extends along the axis of rotation; like a electric dipole moving in the magnetic flux
The $Y=0$ and $Z=0$ branes

Open string state on the $Y=0$ brane should correspond to

$$\mathcal{O}_Y(\chi) \sim \sum_k \epsilon_{i_1 \ldots i_N} \epsilon_{j_1 \ldots j_N} Y_{j_1}^{i_1} \ldots Y_{j_{N-1}}^{i_{N-1}} (Z^k \chi Z^{J-k}) j_N^{i_N}$$

Open string state on the $Z=0$ brane should correspond to

$$\mathcal{O}_Z(\chi, \chi', \chi'') \sim \sum_k \epsilon_{i_1 \ldots i_N} \epsilon_{j_1 \ldots j_N} Z_{j_1}^{i_1} \ldots Z_{j_{N-1}}^{i_{N-1}} (\chi Z^k \chi' Z^{J-k} \chi'') j_N^{i_N}$$

Unlike spinning strings, giant gravitons extends along the axis of rotation; like a electric dipole moving in the magnetic flux

[McGreevy, Susskind, Toumbas (2000)]
The $Y=0$ branes

\[\mathcal{O}_Y(\chi) \sim \sum_k \epsilon_{i_1 \ldots i_N} \epsilon^{j_1 \ldots j_N} Y^{i_1}_{j_1} \ldots Y^{i_{N-1}}_{j_{N-1}} (Z^k \chi Z^J)^{i_N}_{j_N} \]

Preserves the symmetry $\mathfrak{psu}(1|2)^2$

No boundary degrees of freedom

\[[\mathcal{R}_Y, J] = 0, \quad \forall J \in \mathfrak{psu}(1|2) \quad \Rightarrow \quad \mathcal{R}_Y \text{ is diagonal} \]

\[\mathcal{R}_Y^{-}(p) = R_0^{-}(p)^2 \begin{pmatrix} e^{-ip/2} & \quad -e^{ip/2} \\ e^{ip/2} & \quad 1 \end{pmatrix} \otimes 2 \]

Tuesday, November 13, 2012
The $Z=0$ branes

\[\mathcal{O}_Z(\chi, \chi', \chi'') \sim \sum_k \epsilon_{i_1 \ldots i_N} \epsilon^{j_1 \ldots j_N} Z_{j_1}^{i_1} \ldots Z_{j_{N-1}}^{i_{N-1}} (\chi Z^k \chi' Z^{J-k} \chi'')_{j_N}^{i_N} \]

Preserves the symmetry $\mathfrak{psu}(2|2)^2$

Boundary degrees of freedom χ, χ''

(The determinant factorizes if $\chi, \chi'' = Z$)

$\mathbb{R}^-_Z : V(p) \otimes V_B \rightarrow V(-p) \otimes V_B \quad (p > 0)$

$\mathbb{R}^+_Z : V(p) \otimes V_B \rightarrow V(-p) \otimes V_B \quad (p < 0)$

The reflection amplitude \mathbb{R}_Z is non-diagonal

Its matrix structure can be determined by the symmetry

[Hofman, Maldacena (2007)]
Boundary dressing phase

Reflection amplitude for the $Y=0$ brane

$$\mathbb{R}_Y^-(p) = R_0^-(p)^2 \left(\begin{array}{cc} e^{-i\frac{p}{2}} & -e^{i\frac{p}{2}} \\ 1 & 1 \end{array} \right) \otimes 2$$

The scalar factor is fixed by requiring that the total scattering phase of the singlet state is trivial after crossing [Beisert (2005)] [Hofman, Maldacena (2007)]

$$\Rightarrow \text{Boundary crossing equation}$$

$$R_0^-(p)^2 R_0^-(p)^2 = \frac{x^+ + \frac{1}{x^+}}{x^- + \frac{1}{x^-}} \sigma(p, -p)^2$$

A solution consistent with various limits

$$R_0^-(p)^2 = -e^{-ip} \sigma(p, -p)$$

[Chen, Correa (2007)]
Finite-Size corrections from Lüscher formula
Bethe Yang equations

- Transfer matrix is related to Bethe Yang equations, whose solution captures the asymptotic energy

\[-1 = e^{-i J q} T(q | \vec{p}) \bigg|_{q=p_k} \iff -1 = e^{-i J p_k} \prod_{j=1}^{N} S(p_k, p_j)\]

\[E_{\text{asymptotic}} = \sum_{i=1}^{N} \sqrt{Q_i^2 + 4g^2 \sin^2 \frac{p_i}{2}}, \quad g = \frac{\sqrt{\lambda}}{2\pi}\]
Boundary Bethe Yang equations

- Double-row transfer matrix is related to **Boundary Bethe Yang equations**, whose solution captures the asymptotic energy

\[
-1 = e^{-2iqJ} D(q|\vec{p}) \bigg|_{q=p_k} \Leftrightarrow
\]

\[
-1 = e^{-i2Jp_K} \prod_{j=1}^{N} S(p_k, p_j) R^{-}(p_k) \prod_{j=1}^{N} S(p_j, -p_k) R^{+}(-p_k)
\]

\[
E_{\text{asymptotic}} = \sum_{i=1}^{2N} \sqrt{Q_i^2 + 4g^2 \sin^2 \frac{p_i}{2}}
\]
• Bethe-Yang equations determine the asymptotic spectrum of closed string

• Boundary Bethe-Yang equations determine the asymptotic spectrum of open string

• Finite J corrections come from virtual particles in the mirror kinematics

\[
\sum_Q \int d\mathcal{E}_Q \int d\tilde{p}_Q \, e^{-i\mathcal{E}_Q J} \sim \sum_Q \int d\tilde{p}_Q \, e^{-\tilde{\mathcal{E}}_Q (\tilde{p}_Q)^J}
\]

\[(\mathcal{E}_Q, p_Q) = (-i\tilde{p}_Q, -i\tilde{\mathcal{E}}_Q), \quad \tilde{\mathcal{E}}_Q = 2 \text{arcsinh} \left(\frac{\sqrt{Q^2 + \tilde{p}_Q^2}}{2g} \right)\]
Finite-size corrections to closed spectrum

- Lüscher formula was the main tool to study the finite-size corrections to the closed string spectrum

\[\delta E \simeq \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{d\tilde{p}_Q}{2\pi} Y_Q^o, \quad Y_Q^o = e^{-\tilde{\epsilon}_Q J} T_Q^2 \]

- Lüscher formula is written in terms of transfer matrices

\[\delta E = - \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{d\tilde{p}_Q}{2\pi} Y_Q^o \]

Sum over virtual particles

[Lüscher (1986)] [Janik Łukowski (2007)]
Finite-size corrections to closed spectrum

- Lüscher formula was the main tool to study the finite-size corrections to the closed string spectrum

\[\delta E \simeq \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{d\tilde{\rho}_Q}{2\pi} Y_Q^0, \quad Y_Q^0 = e^{-\tilde{\epsilon}_Q J} T_Q^2 \]

Written in terms of transfer matrices

Sum over virtual particles
Finite-size corrections to open spectrum

- Boundary Lüscher formula has been conjectured and tested

\[\delta E \sim \]

\[\delta E = - \sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d\tilde{\rho}_Q}{2\pi} Y_Q^\circ, \quad Y_Q^\circ = e^{-2\tilde{\varepsilon}_Q J} D_Q^2 \]

- Written in terms of double-row transfer matrices

Sum over virtual particles
Finite-size corrections to open spectrum

- Boundary Lüscher formula has been conjectured and tested

\[\delta E \simeq \sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d\tilde{\rho}_Q}{2\pi} Y_Q^o, \quad Y_Q^o = e^{-2\tilde{E}_Q J} D_Q^2 \]

- Written in terms of double-row transfer matrices
Prediction of boundary Lüscher formula

• The Y=0 ground state is BPS. Since its energy is protected, finite-size corrections vanish.

\[\delta E[\mathcal{O}_Y(1)] = 0 \]
[Correa, Young (2009)]

• The finite-size corrections to the energy of Y=0 single-particle states are nontrivial.

\[\delta E[\mathcal{O}_Y(Y)] \approx g^{12} \cdot 192 (4\zeta_5 - 7\zeta_9), \text{ for } (J, n) = (2, 1) \]
[Bajnok, Palla (2010)]

This is six-loop results in N=4 SYM. Field theoretical computation has been performed for Z=0 at four loop, but not Y=0. [Correa, Young (2009)]

\[\mathcal{O}_Y(\chi) \sim \sum_k \epsilon_{i_1 \ldots i_N} \epsilon^{j_1 \ldots j_N} Y^{i_1}_{j_1} \ldots Y^{i_{N-1}}_{j_{N-1}} (Z^k \chi Z^{J-k})^{i_N}_{j_N} \]
Prediction of boundary Lüscher formula

• For general $Y=0$ multi-particle states, we need to diagonalize D_Q by means of algebraic Bethe Ansatz

[Arutyunov, de Leeuw, RS, Torrielli (2009)] [Galleas (2009)]

• However, the computation of the fully general case is too complicated to perform

• We conjecture the generating function for the eigenvalues of D_Q as in the periodic case

[Beisert (2006)] [Bajnok, Nepomechie, Palla, RS (2012)]
Generating function for the eigenvalues of D_Q

The su(2) sector, case of $Q=1$ [Galleas (2009)]

\[D_1 = \rho_1 \Lambda_1 + \rho_2 \Lambda_2 - \rho_3 \Lambda_3 - \rho_4 \Lambda_4 \]

Bulk factor
\[\Lambda_1 = 1, \quad \Lambda_2 = \frac{\mathcal{R}(-)+ \mathcal{B}(-)-}{\mathcal{R}(+)+ \mathcal{B}(+)-}, \quad \Lambda_3 = \Lambda_4 = \frac{\mathcal{R}(-)+}{\mathcal{R}(+)+} \]

Boundary factor
\[\rho_1 = \rho_3 = \frac{(1 + (x^-)^2)(x^- + x^+)}{2x^+(1 + x^+x^-)}, \quad \rho_2 = \rho_4 = \frac{x^-(x^- + x^+)(1 + (x^+)^2)}{2(x^+)^2(1 + x^-x^+)} \]

Notation:
\[\mathcal{R}^{(\pm)} = \prod_{i=1}^{N} (x(p) - x^{\mp}(p_i)) (x(p) - x^{\mp}(-p_i)), \quad \mathcal{B}^{(\pm)} = \prod_{i=1}^{N} \left(\frac{1}{x(p)} - x^{\mp}(p_i) \right) \left(\frac{1}{x(p)} - x^{\mp}(-p_i) \right) \]

\[x(u) + \frac{1}{x(u)} = \frac{u}{g}, \quad p_Q(u) = -i \log \frac{x[+Q]}{x[-Q]}, \quad f[n](u) = f\left(u + \frac{in}{2}\right) \]

\[g = \frac{\sqrt{\lambda}}{2\pi} \text{ is coupling constant, } x = x(u) \text{ or } x = x(p) \]
Generating function for the eigenvalues of D_Q

The su(2) sector, case of $Q=1$ [Galleas (2009)]

\[D_1 = \rho_1 \Lambda_1 + \rho_2 \Lambda_2 - \rho_3 \Lambda_3 - \rho_4 \Lambda_4 \]

\[\Lambda_1 = 1, \quad \Lambda_2 = \frac{\mathcal{R}^{(-)+} + \mathcal{B}^{(-)-}}{\mathcal{R}^{(+)+} + \mathcal{B}^{(+)-}}, \quad \Lambda_3 = \Lambda_4 = \frac{\mathcal{R}^{(-)+}}{\mathcal{R}^{(+)+}} \]

\[\rho_1 = \rho_3 = \frac{(1 + (x^-)^2)(x^- + x^+)}{2x^+(1 + x^+x^-)}, \quad \rho_2 = \rho_4 = \frac{x^-(x^- + x^+)(1 + (x^+)^2)}{2(x^+)^2(1 + x^-x^+)} \]

Notation:

\[\mathcal{R}^{(\pm)} = \prod_{i=1}^{N} \left(x(p) - x^\mp(p_i) \right) \left(x(p) - x^\mp(-p_i) \right), \quad \mathcal{B}^{(\pm)} = \prod_{i=1}^{N} \left(\frac{1}{x(p)} - x^\mp(p_i) \right) \left(\frac{1}{x(p)} - x^\mp(-p_i) \right) \]

\[x(u) + \frac{1}{x(u)} = \frac{u}{g}, \quad p_Q(u) = -i \log \frac{x^{[+Q]}}{x^{[-Q]}}, \quad f[n](u) = f \left(u + \frac{in}{2} \right) \]

\[g = \frac{\sqrt{\lambda}}{2\pi} \text{ is coupling constant, } \quad x = x(u) \text{ or } x = x(p) \]
Generating function for the eigenvalues of D_Q

The su(2) sector, case of $Q=1$ [Galleas (2009)]

\[D_1 = \rho_1 \Lambda_1 + \rho_2 \Lambda_2 - \rho_3 \Lambda_3 - \rho_4 \Lambda_4 \]

\[\Lambda_1 = 1, \quad \Lambda_2 = \frac{\mathcal{R}(-)+ \mathcal{B}(-)-}{\mathcal{R}(+)+ \mathcal{B}(+)-}, \quad \Lambda_3 = \Lambda_4 = \frac{\mathcal{R}(-)+}{\mathcal{R}(+)+} \]

\[\rho_1 = \rho_3 = \frac{(1 + (x^-)^2)(x^- + x^+)}{2x^+(1 + x^+x^-)}, \quad \rho_2 = \rho_4 = \frac{x^-(x^- + x^+)(1 + (x^+)^2)}{2x^+(1 + x^+x^-)} \]

Notation:

\[\mathcal{R}^{(\pm)} = \prod_{i=1}^{N} (x(p) - x^\mp(p_i)) (x(p) - x^\mp(-p_i)) \]

\[\mathcal{B}^{(\pm)} = \prod_{i=1}^{N} \left(\frac{1}{x(p)} - x^\mp(p_i) \right) \left(\frac{1}{x(p)} - x^\mp(-p_i) \right) \]

\[x(u) + \frac{1}{x(u)} = \frac{u}{g}, \quad p_Q(u) = -i \log \frac{x^{[+Q]}}{x^{[-Q]}}, \quad f^{[n]}(u) = f\left(u + \frac{in}{2}\right) \]

\[g = \frac{\sqrt{\lambda}}{2\pi} \quad \text{is coupling constant,} \quad x = x(u) \text{ or } x = x(p) \]
Generating function for the eigenvalues of D_Q

By using the eigenvalue of $Q=1$

$$D_1 = \rho_1 \Lambda_1 + \rho_2 \Lambda_2 - \rho_3 \Lambda_3 - \rho_4 \Lambda_4$$

the generating function for general Q is given by

$$\tilde{\mathcal{W}}^{-1} = (1 - \mathcal{D}\rho_1 \Lambda_1 \mathcal{D})(1 - \mathcal{D}\rho_3 \Lambda_3 \mathcal{D})^{-1}(1 - \mathcal{D}\rho_4 \Lambda_4 \mathcal{D})^{-1}(1 - \mathcal{D}\rho_2 \Lambda_2 \mathcal{D}) = \sum_Q (-1)^Q \mathcal{D}^Q \mathcal{D}_Q \mathcal{D}^Q$$

where $\mathcal{D} = e^{-\frac{i}{2} \partial_u}$ \iff $\mathcal{D} f(u) = f^-(u) \mathcal{D}$
Generating function for the eigenvalues of D_Q

By using the eigenvalue of $Q=1$

$$D_1 = \rho_1 \Lambda_1 + \rho_2 \Lambda_2 - \rho_3 \Lambda_3 - \rho_4 \Lambda_4$$

the generating function for general Q is given by

$$\tilde{W}^{-1} = (1 - D\rho_1 \Lambda_1 D)(1 - D\rho_3 \Lambda_3 D)^{-1}(1 - D\rho_4 \Lambda_4 D)^{-1}(1 - D\rho_2 \Lambda_2 D)$$

$$= \sum_Q (-1)^Q D^Q D_Q D^Q$$

where $D = e^{-\frac{i}{2} \partial_u} \Leftrightarrow Df(u) = f^-(u)D$

$D_Q = D_{Q,1}$ corresponds to Q symmetric rep. of $\mathfrak{psu}(2|2)$

$D_{1,Q}$ for Q antisymmetric reps. of $\mathfrak{psu}(2|2)$ are generated by \tilde{W}

We checked $D_{1,1}$, $D_{2,1}$, $D_{1,2}$ by direct computation
• Using the generating function we predicted the finite-size corrections to the energy of various $Y=0$ (single-particle) states, e.g.

$$\delta E[\mathcal{O}_Y(X)] \approx -2^5 \cdot g^{20} \left[-2^3 \cdot 7 \cdot (99 - 70\sqrt{2})\zeta_9 - 2(6765 - 4785\sqrt{2})\zeta_{11} - 2002(5\sqrt{2} - 7)\zeta_{15} + (7293 - 4862\sqrt{2})\zeta_{17} \right], \quad \text{for (}J, n\text{) = (2, 1)}$$

• The result can be generalized to the full sector of $\text{AdS}_5 \times \text{S}^5$

[Bajnok, Nepomechie, Palla, RS (2012)]
Boundary Y-system and boundary TBA
Generating function and T–system

\[\tilde{W}^{-1} = \sum_a (-1)^a D^a D_{a,1} D^a, \quad \tilde{W} = \sum_s D^s D_{1,s} D^s \]

- The generated transfer matrices solve the su(2|2)\(^2\) T-system

\[D_{a,s}^+ D_{a,s}^- = D_{a-1,s} D_{a+1,s} + D_{a,s-1} D_{a,s+1} \]

- We conjecture that they provide the asymptotic solutions of boundary TBA equations which gives the exact spectrum of Y=0 states

[Bajnok, Nepomechie, Palla, RS (2012)]
T–system and Y–system

The double–row transfer matrices satisfy asymptotic T–system

\[T_{a,s}^+ T_{a,s}^- = T_{a+1,s} T_{a-1,s} + T_{a,s+1} T_{a,s-1} \]

Introduce Y–functions

\[Y_{a,s} = \frac{T_{a,s+1} T_{a,s-1}}{T_{a+1,s} T_{a-1,s}} \]

Y–system

\[\frac{Y_{a,s}^+ Y_{a,s}^-}{Y_{a-1,s} Y_{a+1,s}} = \frac{(1 + Y_{a,s+1})(1 + Y_{a,s-1})}{(1 + Y_{a-1,s})(1 + Y_{a+1,s})} \]

The same structure as in the closed string case!

Exact energy (for open strings)

\[E_Q = \sum_{i=1}^{N} \left(\mathcal{E}_{Q_i}(p_i) + \mathcal{E}_{Q_i}(-p_i) \right) - \sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d\tilde{p}_Q}{2\pi} \log(1 + Y_{Q,0}) \]
T-system and Y-system

The double-row transfer matrices satisfy asymptotic T-system

\[T_{a,s}^+ T_{a,s}^- = T_{a+1,s} T_{a-1,s} + T_{a,s+1} T_{a,s-1} \]

Introduce Y-functions

\[Y_{a,s} = \frac{T_{a,s+1} T_{a,s-1}}{T_{a+1,s} T_{a-1,s}} \]

Y-system

\[\frac{Y_{a,s}^+ Y_{a,s}^-}{Y_{a-1,s} Y_{a+1,s}} = \frac{(1 + Y_{a,s+1})(1 + Y_{a,s-1})}{(1 + Y_{a-1,s})(1 + Y_{a+1,s})} \]
Mirror trick with boundary

- Mirror trick for periodic TBA

\[
Z_E(L, R) = \tilde{Z}_E(R, L) \to \exp(-L\mathcal{F}(R)), \quad R \to \infty
\]

Extremization condition for the “mirror” free energy is called TBA equations

Typically \(\log Y_a = V_a + \log(1 + Y_b) \ast K_{ba} \)
Mirror trick with boundary

- Mirror trick for boundary TBA

\[\langle e^{-R \mathcal{H}_{\ell r}} \rangle = \langle B_\ell | e^{-L \tilde{\mathcal{H}}} | B_r \rangle = \sum_n \langle B_\ell | n \rangle e^{-L \tilde{\epsilon}_n} \langle n | B_r \rangle \]

Extremize the mirror free energy with the driving term

\[V_{\ell, r} = \log \left(\langle B_\ell | n \rangle \langle n | B_r \rangle \right) \]

[Leclaire, Mussardo, Saleur, Skorik (1995)]

N.B. Such term often disappears when we derive Y-system from TBA
Mirror trick with boundary

- Problems to derive the boundary TBA

\[V_{\ell,r} = \log (\langle B_{\ell}|n\rangle \langle n|B_{r}\rangle) \]

However, the boundary states \(|B_{\ell,r}\rangle\) are written in the Zamolodchikov-Faddeev basis instead of the Bethe Ansatz basis. These two bases are related non-trivially for the integrable models with non-diagonal S-matrix. Hence it is difficult to compute \(\langle n|B_{\ell,r}\rangle\) and to derive BTBA in the AdS/CFT setup.
From boundary Y-system to BTBA

- We may still conjecture BTBA for Y=0 brane
- BTBA should be same as the TBA for closed strings except for the source terms
- The source term can often be fixed by the asymptotic data
- In other words, we integrate (boundary) Y-system with (asymptotic) discontinuity relations to get/define BTBA
Exact energy for $Y = 0$ and $Y = 0 & \bar{Y} = 0$

- Since $Y=0$ brane is BPS, the exact ground state energy vanishes
- More interesting to study non-BPS ground states

 e.g. $Y = 0$ on the left, $\bar{Y} = 0$ on the right

- This corresponds to changing the supertrace to the trace
- Open tachyon in the spectrum

Konishi energy $E \approx 2\lambda^{1/4} = 2\frac{R}{\sqrt{\alpha'}}$

Open tachyon energy $E \approx -\lambda^{1/4}$

Need to solve BTBA numerically
Conclusion
Conclusion

- Studied AdS/CFT for open strings ending on SMGG by using integrability methods
- Conjectured generating function for the double-row transfer matrix
- Y-system for $Y=0$ brane is same as Y-system for closed strings

Future directions

- Formulation of BTBA and numerical solution
- Small angle limit and analytic solution
- Rigorous derivation of integrability method
- $Z=0$ and other types of boundary conditions
Conclusion

- Studied AdS/CFT for open strings ending on SMGG by using integrability methods
- Conjectured generating function for the double-row transfer matrix
- Y-system for $Y=0$ brane is same as Y-system for closed strings

Future directions

- Formulation of BTBA and numerical solution
- Small angle limit and analytic solution
- Rigorous derivation of integrability method
- $Z=0$ and other types of boundary conditions
Thank you for attention